12,068 research outputs found

    Dirichlet's and Thomson's principles for non-selfadjoint elliptic operators with application to non-reversible metastable diffusion processes

    Full text link
    We present two variational formulae for the capacity in the context of non-selfadjoint elliptic operators. The minimizers of these variational problems are expressed as solutions of boundary-value elliptic equations. We use these principles to provide a sharp estimate for the transition times between two different wells for non-reversible diffusion processes. This estimate permits to describe the metastable behavior of the system

    Review of Reactor Neutrino Oscillation Experiments

    Full text link
    In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13\theta_{13} neutrino mixing angle. The neutrino mixing angle θ13\theta_{13} is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, \textsc{Double Chooz}, \textsc{Daya Bay} and \textsc{Reno} and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of θ13\theta_{13} is given, along with a discussion of the sensitivities that these experiments can reach in the near future.Comment: 15 pages, 4 figure

    THE INDETERMINATE PRESENT: AN ESSAY ON QUANTUM MECHANICS AND THE OPEN FUTURE

    Get PDF
    The dissertation is a defense of the following conditional claim: if there are objective collapses of the wavefunction, then the future is genuinely open. Although this is no radically new idea, the strategy I shall use to defend it is a new one. It proceeds in two main steps. First, building upon the recent literature on metaphysical indeterminacy in quantum mechanics, I argue for the view that systems in superposition have be interpreted as objectively indeterminate state of affairs. Second, I propose an alternative way to think of openness, according to which the future is open as of t, if and only if there is an indeterminate state of affair S at t, and S becomes determinate at t\u2019 (with t\u2019 later than t). To argue for the second step, I will give an analysis of the objective collapses of the wavefunction as the becoming determinate of previously indeterminate systems. Furthermore, in developing my arguments, I will also make some remarks concerning the ontology of objective collapse interpretations of quantum mechanics, the issue of whether metaphysical indeterminacy can be at some derivate level of reality, and the possibility of the openness of the future being an emergent phenomenon

    Modern Physics Letters A c â—‹ World Scientific Publishing Company Review of Reactor Neutrino Oscillation Experiments

    Get PDF
    In this document we will review the current status of reactor neutrino oscillation experiments and present their physics potentials for measuring the θ13 neutrino mixing angle. The neutrino mixing angle θ13 is currently a high-priority topic in the field of neutrino physics. There are currently three different reactor neutrino experiments, Double Chooz, Daya Bay and Reno and a few accelerator neutrino experiments searching for neutrino oscillations induced by this angle. A description of the reactor experiments searching for a non-zero value of θ13 is given, along with a discussion of the sensitivities that these experiments can reach in the near future

    Parametric resonance and spin-charge separation in 1D fermionic systems

    Full text link
    We show that the periodic modulation of the Hamiltonian parameters for 1D correlated fermionic systems can be used to parametrically amplify their bosonic collective modes. Treating the problem within the Luttinger liquid picture, we show how charge and spin density waves with different momenta are simultaneously amplified. We discuss the implementation of our predictions for cold atoms in 1D modulated optical lattices, showing that the fermionic momentum distribution directly provides a clear signature of spin-charge separation.Comment: 6 pages, 3 figures, published versio

    Numerical Implementation of lepton-nucleus interactions and its effect on neutrino oscillation analysis

    Full text link
    We discuss the implementation of the nuclear model based on realistic nuclear spectral functions in the GENIE neutrino interaction generator. Besides improving on the Fermi gas description of the nuclear ground state, our scheme involves a new prescription for Q2Q^2 selection, meant to efficiently enforce energy momentum conservation. The results of our simulations, validated through comparison to electron scattering data, have been obtained for a variety of target nuclei, ranging from carbon to argon, and cover the kinematical region in which quasi elastic scattering is the dominant reaction mechanism. We also analyse the influence of the adopted nuclear model on the determination of neutrino oscillation parameters.Comment: 19 pages, 35 figures, version accepted by Phys. Rev.

    Control of deep lithospheric roots on crustal scale GOCE gravity and gradient fields evident in Gondwana reconstructions

    Get PDF
    The GOCE gravity field is globally homogeneous at the resolution of about 80km or better allowing for the first time to analyze tectonic structures at continental scale. Geologic correlation studies based on age determination and mineral composition of rock samples propose to continue the tectonic lineaments across continents to the pre-breakup position. Tectonic events which induce density changes, as metamorphic events and magmatic events, should then show up in the gravity field. Therefore gravity can be used as a globally available supportive tool for interpolation of isolated samples. Applying geodynamic plate reconstructions to the GOCE gravity field places today\u2019s observed field at the pre-breakup position. In order to test the possible deep control of the crustal features, the same reconstruction is applied to the seismic velocity models, and a joint gravity-velocity analysis is performed. The geophysical fields allow to control the likeliness of the hypothesized continuation of lineations based on sparse surface outcrops. Total absence of a signal, makes the cross-continental continuation of the lineament improbable, as continental-wide lineaments are controlled by rheologic and compositional differences of lithospheric mantle. It is found that the deep lithospheric roots as those found below cratons control the position of the positive gravity values. The explanation is that the deep lithospheric roots focus asthenospheric upwelling outboard of the root protecting the overlying craton from magmatic intrusions. The study is carried out over the African and South American continents. The background for the study can be found in the following publications where the techniques which have been used are described: Braitenberg, C., Mariani, P. and De Min, A. (2013). The European Alps and nearby orogenic belts sensed by GOCE, Boll. Bollettino di Geofisica Teorica ed Applicata, 54(4), 321-334. doi:10.4430/bgta0105 Braitenberg, C. and Mariani, P. (2015). Geological implications from complete Gondwana GOCE-products reconstructions and link to lithospheric roots. Proceedings of 5th International GOCE User Workshop, 25 - 28 November 2014. Braitenberg, C. (2015). Exploration of tectonic structures with GOCE in Africa and across-continents. Int. J.Appl. Earth Observ. Geoinf. 35, 88-95. http://dx.doi.org/10.1016/j.jag.2014.01.013 Braitenberg, C. (2015). A grip on geological units with GOCE, IAG Symp. 141, in press
    • …
    corecore